Polyadenylation Linked to Transcription Termination Directs the Processing of snoRNA Precursors in Yeast

نویسندگان

  • Pawel Grzechnik
  • Joanna Kufel
چکیده

Transcription termination by RNA polymerase II is coupled to transcript 3' end formation. A large cleavage and polyadenylation complex containing the major poly(A) polymerase Pap1 produces mRNA 3' ends, whereas those of nonpolyadenylated snoRNAs in yeast are formed either by endonucleolytic cleavage or by termination, followed by trimming by the nuclear exosome. We show that synthesis of independently transcribed snoRNAs involves default polyadenylation of two classes of precursors derived from termination at a main Nrd1/Nab3-dependent site or a "fail-safe" mRNA-like signal. Poly(A) tails are added by Pap1 to both forms, whereas the alternative poly(A) polymerase Tfr4 adenylates major precursors and processing intermediates to facilitate further polyadenylation by Pap1 and maturation by the exosome/Rrp6. A more important role of Trf4/TRAMP, however, is to enhance Nrd1 association with snoRNA genes. We propose a model in which polyadenylation of pre-snoRNAs is a key event linking their transcription termination, 3' end processing, and degradation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct pathways for snoRNA and mRNA termination.

Transcription termination at mRNA genes is linked to polyadenylation. Cleavage at the poly(A) site generates an entry point for the Rat1/Xrn2 exonuclease, which degrades the downstream transcript to promote termination. Small nucleolar RNAs (snoRNAs) are also transcribed by RNA polymerase II but are not polyadenylated. Chromatin immunoprecipitation experiments show that polyadenylation factors ...

متن کامل

Nonpolyadenylated RNA polymerase II termination is induced by transcript cleavage.

Although the termination of transcription and 3' RNA processing of the eukaryotic mRNA has been linked to a polyadenylation signal and a transcript cleavage process, much less is known about the termination or processing of nonpolyadenylated RNA polymerase II transcripts. An efficiently expressed plasmid-based expression system was used to study the termination and processing of Schizosaccharom...

متن کامل

The THO complex cooperates with the nuclear RNA surveillance machinery to control small nucleolar RNA expression

THO is a multi-protein complex that promotes coupling between transcription and mRNA processing. In contrast to its role in mRNA biogenesis, we show here that the fission yeast THO complex negatively controls the expression of non-coding small nucleolar (sno) RNAs. Accordingly, the deletion of genes encoding subunits of the evolutionarily conserved THO complex results in increased levels of mat...

متن کامل

cis- and trans-Acting determinants of transcription termination by yeast RNA polymerase II.

Most eukaryotic genes are transcribed by RNA polymerase II (Pol II), including those that produce mRNAs and many noncoding functional RNAs. Proper expression of these genes requires efficient termination by Pol II to avoid transcriptional interference and synthesis of extended, nonfunctional RNAs. We previously described a pathway for yeast Pol II termination that involves recognition of an ele...

متن کامل

The essential N terminus of the Pta1 scaffold protein is required for snoRNA transcription termination and Ssu72 function but is dispensable for pre-mRNA 3'-end processing.

Saccharomyces cerevisiae Pta1 is a component of the cleavage/polyadenylation factor (CPF) 3'-end processing complex and functions in pre-mRNA cleavage, poly(A) addition, and transcription termination. In this study, we investigated the role of the N-terminal region of Pta1 in transcription and processing. We report that a deletion of the first 75 amino acids (pta1-Delta75) causes thermosensitiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2008